Skip to contents

Performs root turnover analysis for either a single multi-layer image or two separate images

Usage

root_turnover(
  img1,
  img2 = NULL,
  method = "kimura",
  unit = "cm",
  dpi = 300,
  select.layer = NULL,
  product.layer = 2,
  decay.layer = 1,
  blur.capture = 0.95,
  im.return = FALSE,
  include.virtualroots = FALSE
)

Arguments

img1

Primary SpatRaster input (either multi-layer or first timepoint image)

img2

Optional second timepoint image (if img1 is single timepoint)

method

Analysis method: "kimura", "rootpx", or "dpc" (root decomposition)

unit

Unit of root length measurement (only for method = "kimura"). Default: "cm"

dpi

Image resolution (only for method = "kimura"). Default: 300

select.layer

Integer or NULL. When two images are provided with multiple layers, specifies which layer to use. When img1 is multi-layer, ignored for DPC method.

product.layer

Integer indicating the production layer index for DPC method (1-3)

decay.layer

Integer indicating the decay & tape layer index for DPC method (1-3)

blur.capture

Threshold for pixel inclusion in DPC method (0-1). Default: 0.95

im.return

Logical: return images instead of values for DPC method? Default: FALSE

include.virtualroots

Logical: consider all roots present at any timepoint in DPC method? Default: FALSE

Value

Depends on method and parameters: - For temporal comparison: data.frame with root production and turnover - For DPC method: tibble with pixel sums and ratios or list of SpatRaster layers